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OUTLIER RESISTANT FILTERING AND SMOOTHING

by
Haralampos Tsaknakis and P. Papantoni-Kazakos

University of Connecticut

EECS Department, U-157

Storrs, Connecticut 06268

Abstract

We consider a stationary Gaussian information process transmitted through an

additive noise channel. We assume that the noise and information processes are

mutually independent, and we model the noise process as nominally Gaussian with

additive independent ouliers. For the above system model, we first develop a theory

for outlier resistant filtering and smoothing operations. We then design specific

such nonlinear operations, and we study their performance. The performance criteria

are the asymptotic mean squared error at the Gaussian nominal model, the breakdown

point, and the influence function. We find that our operations combine excellent

at the nominal model performance with strong resistance to outliers.

This work was supported by the U.S. Air Force Office of Scientific Research,
under the grant AFOSR-83-0229.
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1. Introduction

In filtering and smoothing, information carrying data are extracted from noisy

observations. The formalization and solution of the filtering and smoothing problems

are well established, when the joint process that characterizes the relationship be-

tween information and noise data sequences is statistically well known (see Kalman

(1960, 1963), Kolmogorov (1941), and Wiener (1949)), or parametrically known.

Linear filtering and smoothing operations are then by far the most

*. widely used, due to their simplicity in implementation. In practice, however,

- the occurence of occasional extremely erroneous data values, called outliers, are fre-

quently observed. Furthermore, linear data operations are notoriously nonresistant

to such outliers, inducing dramatic performance instabilities. The purpose of this

paper is to establish a theory for outlier resistant filtering and smoothing procedures

and to provide specific such data operations for Gaussian information processes, and

additive, nominally Gaussian, noise processes. Our presentation is based on the

theory of qualitative robustness (see Boente et al (1982), Cox (1978), Hampel (1971),

Papantoni-Kazakos and Gray (1979), and Papantoni-Kazakos (1981, 1983, 1984a, 1984b)).

2. Preliminaries

Let us consider discrete-time information and noise stochastic processes. Let

X = {X }I = {Wi9."'Wk} , and yk = {yi'..'Y } , i>k,denote random data
1 i' 'k 1 i" k 1 i *k '

sequences respectively generated by the information, noise, and observation (joint

information and noise) stochastic processes. Let x = kxi I w.. ,x.} w~ = {w .... ,

and yk = {y, i>k, denote realizations of respectively the random sequences,
i Y'k1

Xk, Wk, and yk, and let xk, w, and yk all take their values on the Euclidean space

Rk-i+. Let V denote the measure of the observation process, and let in denote the

n-dimensional restriction of v. Let the objective be to estimate the information

datum x., from the observation sequence Yk where i<e<k, and let the mean squared

criterion be used. If the measure, W, is well known, then the mean squared estimate,

~~~~~~~~~~.. . .. . . . . . . . . . .. .... ..... .. . .- . .'* ,, * .., .- -'-. .'. ,. ,','': ,,.-"
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of xt is given by the conditional expectation E {XLly,k-i+l . If the

measure p is also Gaussian, then the latter conditional expectation is a linear

transformation of the observation sequence yk. Given the measure, p, and the

observation sequence, yk, the mean squared estimate, (y k) is a function
of the sequence yk, whose specific form is determined by the measure V. The induced

mean squared error, e (U,^ ), is then equal to the expected value^k k {tI t k-~

E{ -xt(yi)]21pk-i+l}, where x[x(Yi) = E{

The occurence of occasional outliers induces uncertainties in the description

of the measure V. The initial issue is then the qualitative characterization of

those uncertainties, with the final objective being the design of outlier resistant

filtering and smoothing operations. As it has been previously established (Boente

et al (1982) and Papantoni-Kazakos (1983, 1984b)), the outlier model is best described

by a Prohorov class. In particular, if p denotes the nominal measure of the observa-

tion sequences, the outlier model is described by the Prohorov ball HI ,0n(VO,)<E of

processes, where C represents frequency of outlier occurence, and where p n(xn,yn) is

a distortion measure between data sequences xn and yn respectively generated by the

measures po and p, defined as follows:

n-lZJxi-yiJ Yn(xn,yn ) ; for given finite ni

p n(xn,yn)= (1)

inf {fa:nl[#i:ym(x i+l yitl )>1]4<}; for

n>n o , where m and n are fixed positive integers

If N denotes the class of joint processes, v, whose marginals are o and V, then

the Prohorov distance Hnn (i po') is defined as follows:

11 (1o ,00) = inf inf {6:v(xnyn:p n(X'yn) >6)<6} (2)n,pnn

veN
The distortion measure pn(xnyn) in (1) is clearly a metric, for all n, the

integer m is a design parameter corresponding to outlier patterns, and n is an

* integer determined by the nominal measure lh, for the satisfaction of performance

!a
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' ^ .i+n-l
stability. In particular, given n, an estimate, xZ Yl ), i<, of the

information datum xt is called outlier resistant or qualitatively robust at

iff:

Given e>O, there exists 6>0, such that,
1n, 0(1O,)<6 implies lel,i+n lx,)e~~nlp )<

Furthermore, for the estimate ^ (yn-l), it to be outlier resistant at Vfor

given finite n, it is sufficient that xt be bounded, and that the following continuity

condition holds (see Papantoni-Kazakos and Gray (1979),Boente et al (1982),and Papanto

Kazakos (1981, 1983, 1984a, 1984b)), if the class N in (2) includes stationary

processes only.

Condition A

For given finite n, pointwise continuity as a function of the data.

That is, given c>O, given x , there exists 6>0, such that,

i+n-l
Y ij -l: n1lZ ix -y 1<6 implies 12 (xnl)-R (y4l)I<cj=i t

If N is a class of stationary and

ergodic processes, then the limit lim II (Po,p) of the Prohorov distance in (2)
n-0 o 0 n

equals the Prohorov distance ImYM (.0,), where Ym(xm,ym ) is as in (1). In add-

tion, if the measure Pm is absolutely continuous, and if then fm(xm) denotes the0 0
density function induced by the measure Vo at the vector point xm, the class F1

of density functions defined below is contained in the class HT (oI)<c of

measures v.

F 5 = { fm = (1-E) fm + Ehm , hm any m-dimensional density functionl (3)
0

The class Fm of densities in (3) represents the occurence of arbitrary outlier

m-dimensional data sequences, with probability E, where with probability 1-C each

m-dimensional data sequence is generated by the nominal measure po.
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3. The Model and Outline of the Approach

We will adopt the nominal model of additive and mutually independent informa-

tion and noise processes, which possess density functions, for any given dimensionalit

n. Given n, these density functions are respectively denoted fn and fn, and the
Os O

corresponding density function, fn, of the nominal observation process is then given

by the convolution fn *fn We will consider m-dimensional outlier patterns, as

described by the class Fm in (3), with fm =fm * fm Given the above model,
0 OS ON

we wish to estimate the data sequences,..,x_lXox,1 ,.., generated by the density

function fo. In particular, each information datum x, is estimated via an observa-

tion sequence yi+k-,i<<i+k-l, where if t-i+k-l the estimation operation,

* (y +k-l), corresponds to filtering, and where it corresponds to smoothing otherwise.

Initially adopting the mean squared criterion, we are seeking filtering and

smoothing operations that are outlier resistant, and simultaneously induce satisfactor)

performance at the nominal model.For finite number of observations, condition A,section

in conjuction with boundness are sufficient for outlier resistance. They define,

however, a large class of possible operations, and they do not incorporate perform-

ance at the nominal model. We will address the overall issue (outlier resistance

and performance at the nominal model) via a combination of saddle point game theory

and the theory of qualitative robustness. We will do this in two steps: (a)

when each information datum is estimated via a length -k observation sequence, for

k<m, where m as in (3), and (b) when the latter length k exceeds m. At each step,

a saddle point game is first formalized and solved. Then, the induced by the

latter solution filtering or smoothing operation is checked against the continuity

condition A in section 2 and against boundness. If those conditions are not

satisfied, the operations are appropriately modified. To avoid vagueness in our

presentation, we assume from now on that the nominal information process (with density

function f ) is zero mean and Gaussian.
os
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4. Construction of Filtering and Smoothing Operations-Step 1

Consider the model in section 3, with f Gaussian, zero mean, and not necessarilos

stationary. Let then R (ij) denote the autocovariance matrix of the random informa-s

tion data sequence i, where j>i, and consider the mean squared estimation of the
i - ip-k-i'-

the information datum x., using an observation sequence y -, such that i<t<i+k-l

and k<m, where m is as in (3). For dimensionalities k<m, the observation sequence

yi+k-I is generated by the k-dimensional restriction of some density function fm
r

in the class Fm . Given some estimate, (yi+ k- l ), of the datum X, the mean squared

error, ei+k. (fm, 1 ),that it induces at the density fm,equals E{[X -fc(Yi+k-l)]21fm}.

Given k<m, we then consider a saddle point game, with payoff function the error

e. ( l)  In particular, we search for a pair (fm,^*) such that f eFIR, and,

,,-m ^*mm ,

games we then conclude that the saddle point can be found as follows.

(f,):e=~_ f,)_ sup inf e. (fm ) (5)

;where, if fk denotes the k-dimensional restriction of the density fm, then,

inf ei i+klfm, l ) =a 
2 - I (fk) (6)

i- ik- et
Xt

Xl = E{X)} (7)

1(fk) A E{ E
2{XYi+k-l,fk }I fk} (8)

;and thus,

fll.I (fk) inf 1(f k (9)
fmcFm

* ̂* i+k-l I i+k-I fk
Xe X t -- X it (10)

Let us now denote by Vt the (t-i+l)th row of the autocovariance matrix

R (i,i+k-l); that is, Vl  (E{XiX },...,E{Xi+k X }1. Let now V fk (yi+k-1)
S t -

denote the directional derivative of fk(y+k-1) with respect to the column

vector V t Then, since the information process is zero menn Gusian, we e ilv

find that the quantity l(fk) in (8) takes the following form, where R denotes

.. - .. . .. .- -., ...- , - .* J..... .. . .. ,. , m . . - -
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the real line. f [Vfk(yi+k-1)]2

I(f) = k i d yi+k-I (I1)

The functional in (11) is a generalized Fisher information measure, and it

is vaguely lower semicontinuous in the vague topology of all the k-dimensional density

functions (Huber(]981)). In addition, the closure, Fm, of the class Fm in (3)

is vaguely compact. Therefore, the infimum, inf I(fk), exists and is attained
fmFm

in F. If fm is some density in F5 that attains the latter infimum, then the
c

estimate xi in (10) takes the following form.

V fk(yi+k-l1

(xl x 1 ) t k i+k-1 (12)

f*(Yi )

Regarding uniqueness, we proceed with the following theorem, whose proof

is in appendix A.

Theorem 1

Let fk and fk be two densities in Fn that both attain the infimum
1 2

inf I(fk). Then,

V fk(yi+k-I) V fk(yi+k-1)
Z 1 i Z2 1 a e. y i+k-i £Rk
fk i+k-l, fk i+k-l
1) 1)

The saddle point estimate X in (12) is thus a.e. unique in Fm .

To find the explicit form of a saddle point pair (f, ), we will now assume

that the nominal noise process is zero mean Gaussian and we will denote the auto-

covariance matrix of the random sequence wij>i from this process, RN(i,j). Con-

sidering the (t-i+l) th row V. of the autocovariance matrix Rs(i,i+k-1), defined

earlier, we then denote,

...................................................... '... -.-.-. , ....
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M = R (i,i+k-l) + R (i,i+k-1)
ik

Pik = ik V (13)

rk() =V Pik ()

k i+k-i
y Yi

Denoting by O(x) and V(x) respectively the density function and the

cumulative distribution at the point x, of the zero mean, unit variance Gaussian

random variable, we then express the following lemma, whose proof is in appendix A.

Lemma 1

Let the nominal information and noise processes in class Fm be both Gaussian,

with zero mean and autocovariance matrices as above. Then, a saddle point solution

(f,,^*) of the game in (4) is given by the expressions below, where x*(yk) is uniquek 
is t

a.e. in R , and where j , T, (-I) respectively denote determinant, transpose, and

inverse.

(k-E) (2k)-k/2 -1/2 exp y k -1 Y k y k (t)kyk) 2

ik2k y 'ik

* )= P (PTik )k 2-k rik() 2; Y r A >t

Ign t)k kk I k

-T M y k - Y k : IP T M kI yk<

• ik (k v k v

A -n PI' e) k); Yk: iPT M V >  (15

IL~~i .. ...-k-" '
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where, 1sgnx

1 x< 0

X c /rr (16)

- 1  2-c (17)
c (c) + c (c) 2(1-c)

We note that given E, the constant c in (17) is unique. Also, rk(e)=I(fk

where fk is the nominal Gaussian observation density. Thus, given f and i, ri(f)
0 ik

is monotonically nondecreasing with increasing k. Similarly, given e and k,

r ik() is monotonically nondecreasing with decreasing i. We observe that the

estimate in (15) is a truncated version of the linear, optimal at the nominal

Gaussian model, mean squared estimate. In addition, for E-O, the constant c in (17),

tends to infinity, and so does then the truncation constant X. In the latter case,

the estimate in (15) becomes identical to the optimal at the nominal Gaussian

model mean squared estimate. Finally, for any c>O in (17), the estimate in (15)

is clearly bounded, and satisfies condition A in section 2; it is thus outlier

resistent.

m *
The mean squared error, ei,i+kl (f*, ), induced by the estimate Xe in (15),

at the least favorable in density function f(y k) in (14),equals a I(f k

k
where I(f ) is the information measure in (11). The above error ts the largest mean

squared error induced by X in Fm , and by substitution we obtain,

M 2
e. )-(1-) (2 (c) -i) (i, i+k 1 ( ,, =i

where C is as in (17), and r ik(') is as in ([I ). arId where,

• 'i~ t) " -l ,-kik

i i k.{

N" " -" -..". .,".....-
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Let eif +k 1 (fXl denote the mean squared error induced by the estimate
* 15, the- density m- 0x E in (15), at the nominal Gaussian observation density fno, and let e0m

denote the mean squared error induced by the optimal at f mean squared estimate of
0

x , t fmi+k-i
x,, at fm given the observation vector yi . Then, via straight forward computa-

0

tions, and for c as in (17) and P ik(Z) as in (19), we obtain,

e() = -Pik ()] (20)

e.mxe) e' (E) + 2ri _c' CO (21)i, i+k-l 0fo x/ = i+k-1 (/)

5. Construction of Filtering and Smoothing Operations - Step 2

For the same model as in section 4, we now consider the case where the

length of the observation sequence is larger than the integer m in (3). Consider-

ing observation sequences yn ; we will distinguish here between causal filtering and

. noncausal filtering or smoothing. In the former, the information datum xk is

k
estimated, given the observation sequence yl In the latter, the datum xk is

2k-1

estimated, when the sequence Y 1  is observed.

5.1. Causal Filtering

Let us define,

V k = ['XIk Ekil

Mk - Rs(l,k) +RN (1,k) (22)

P =
"- k =  Mlk V1'T

r k V k. 1rk : k I'

.................. ....................... ........-............v..'.-.-.-...-----.- v ..---- ,v.-.--.--...-.-.--.-i-:.:::.: "" .- ,; , : .:-. :":: - --,, " " " .,a,,, ,,-
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Then, for k < m , and directly from lemma 1, we conclude that the

estimate Xk (yk) is as follows.

Xk Xk P Fk (; k<m (23)

where,

gF,k (z) - (24)
)sgn z ; I z[ > X'

1/2
)k crk (25)

-l 2-c

c D (c) + c- 1  q(c) = 2(-c) (26)

Let us now assume that k>m, and let us consider the estimation of the datum

Xk., given the estimates c (yll) ; l< e< k-1 1, and given the observation sequence yl"

^'k-4 ,k-.)T ^ ,
Forx I  : ) = [Xl,..,Xk], k-t >'l, let us define,

T -1 "k-m
Xl/ G /,Z+m-k Rs,k-m ; I < t < k-

=T -1 ^k-m (27)

1k G km s,k-m X1

where,

6 T [E{ ...,E{ Xk T T (28)

R -= R (1,k-l) (29)s~- s

Given e 1 < e < k-1, the effective observation datum corresponding to the time index

is then, ye -xI . In addition, given the sequence of estimates,

(yl); . k-n, an initial estimate ( the datum x is provided by x(I)1 k- niiil siaeo k 11'

For the final estimate of the dittum x L ; . m, we use the operation

( z) in (2") , in 'on I. n ' t iIn wi t 1 t he Ih(vt. Offec ivi oh erva tions, to o t in

Ill •.2
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^ A' " k T -1 ^k-m ^

Xk = xk(Yl) Gk Rsk -m X1  + Xk
kg mskm1 F,m kU .... tYk-m+l- Xl,k-m+l'O .... ,]P k )

;k > m (30)

where G, Rs,kl, and Pk are respectively as in (28), (29), and (22), and where,

k -t
'l I

-1 T ''Xk- A = Y (31)

As an alternative, we also consider the following causal filtering operation.
/ I T

{8Fk( Pk Y1); k <m
"x I A =( 3 2 )

T -1 ~ k-1 k~Bk RS(m,k-1) z " k > m

k1 mT k-;where, (Z m....zk-1 B mk [EfXX,..EfX } and,

- = g; T > m (33)

5.2 Noncausal Filtering or Smoothing

Let us define,

Mk = Rs (k-l, k+/) + R (k-ek+e)

-l T (34)k -Mvke

r UP V ktP

For 2-+l<m, and directly from lemma 1, we then conclude,

A,.ke k Yk- g S,k Pk k-C 2f (35)

, -' .. .. . k( Xk k-, .. . ( ,> ,-i 2f irnI ii l ~ i l l ,l i
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; where c is as in (26), and,

sgnz( Z) =>(36)

1/2. t c r k (37)

For - such that 2t > m - 1, and m = 2n + 1, we consider the following

smoothing operation.

Tgkk- ( -lYl 2k1 ; 2(k-l)<m-i =2n

{= T A-1 (38)

Hkk-n-1 As,k,k-n-1 Wk-m ;.2(k-1) > m-1i 2n

where,

("k T "k-l T "2k-n-i T(k [ n+l( ,(Wk+1  ) I

n+l w n~~ .. k-l,] (39)

k+l [ =k+l,n"'' W2k-n-l,]

6. Asymptotic Properties

In this section, we are focusing on the asymptotic properties of the
operations presented in section 5. We begin by proving that the latter

operations are oUitl ier resistant, for ;aswmptot icl lv long (Idata eq ienCes.
For finite length stich sequlences, the operation. ,re coktlier resistant, sice

they sat isfy condition A in section 2. Reardi g Isvnptot Ic otitlier resistance,

*/v~~. ..... .' .. ' ... ... .. .. -"% , -- 'FI % W * Ii • -IV~ I : r i -W - I
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we will go directly to the definition of outlier resistance, stated in section 2.

We will consider sequences of i.i.d. m-size blocks of outlier values, that are

additive to and independent of the nominal Gaussian noise process. We then

express the following theorems, whose proofs are in appendix B.

Theorem 2

Let the Gaussian information process in sections 4 and 5 be such that:

There exists some finite positive constant c, such that,

E{X } <c ;

IH Tk_ A -  2kl ; Vkk , -1 Sk~k- 2(k1)1-S c(40)

IGk TRs,k-i Ik-11 <c ; Vk

T A T;where ITA [1,.. ,I, with n elements, and where G and R
n k s" ' s

are respectively given by (28) and (29).

Then, the operation in (30) is asymptotically (k - ) outlier resistant,

within the class of stationary and ergodic observation processes, and for mutually

independent m-size batches of ouliers.

Theorem 3

Let the Gaussian information process satisfy conditions (40) in theorem 2.

Then, for mutually independent m-size batches of outliers, the operations in (32)

and (39) are outlier resistant, for every k.

We will now turn to the evaluation of the asymptotic at the nominal Gaussian

model mean squared error, induced by the operations in (32),(38),.ad (30),

in the case where the Gaussian nominal information and noise processes are both

stationary, with respective power spectral densities, f (M) and f,,(, ,if[-T,1.
S

4

9

., . 4 , * .
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We will start with the operations in (32) and (38), whose asymptotic forms, when

the information datum x0 is estimated from infinite past and future observation

data, are then respectively as follows.

-1 T ?-
XOF E d gF,m (P (41)

,m_ m t-m+l

^ - T f-+n-
s= a. gst,n(P, nYn) (42)

The sets {dl } and {al } are respectively the prediction and interpolation coefficientsI~I
corresponding to the Gaussian nominal information process. The functions gF,m(')

and gs,,n (.) are respectively as in (24) and (36), and they both induce stationary

processes, when operating on sequences from the stationary nominal Gaussian model.

Let us then denote by f (w) and f (w) , we [-7T,7r], the power spectral densitiesgF,m gsn

induced respectively by gF'm(.) and gStn(.) and the stationary Gaussian nominal

model, where then gs,,n (.) is not a function of t. Let D(w) and A(w), wE [-ii],

be the Fourier transforms of respectively the sequences {df;- o-C<-l} and

{ae;-ot<Z<-,4OQ}, and let us define,

-jw jw(m-l)

HF,m (w) = [l,e .... e- m P m (43)

H w j wn jw -jW -jwn
H S,n (w) = [e '". e3 , 1,e .'' .. P n (44)

*; where P in (43) is as in (22), and where P in (44) is as Pkn in (34), for any kSm n kn

in the case of the stationary Gaussian nominal model. Given all the above, and

denoting by e(fo , OF) and e(fo, OS) the mean squared errors induced respectively by

the estimates in (41) and (42), at the nominal stationary Gaussian observation density

f , we obtain,
0
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e(fo, fOF ( fs(w)dw 212(c)-11 Re(D()HF m(M))f s (M )dw

+ ( f (m) MID( W) I2d&w (45)

e(f o , 0) = (21) -  fs()d - 22()- Re(A()H ())f ()d

S OS R w S,n S

-7T -i"

IT

+ f Tf (S M) IA()I 2dw (46)

where Re(.) denotes real part, where 11h(w)[12 = h(W)h*(w), where D(x) is the

Gaussian distribution at the point x, and where the constant c is as in (26).

The quantities that present problems In the evaluation of the asymptotic mean

squared errors, in (45) and (46), are the power spectral detsities f (W) and
F,m

f (w) These power spectral densities correspond respectively to the sequences,
gsn

{gF(Z )} and {g (E )} of random variables, where Z. = pT Y and E, = pT Yi+n
iFm i Sn i I m i-m+l n i-n'

and where for c as in (26), X as in (25), and Vn = VK; Vk as in (37), the functions

gF,m(Z) and g (Z) are as follows.

$z;izI<Xm
gFm(Z) = m (47)

Xmsgn(z);z>),

Sz; I z I<Jj

g ~ (Z (48)
s,n n Isgn(z);IzI>n4

*

We will seek upper and lower bounds on the errors in (45) and (46), via the

derivation of such bounds on the spctral characteristics of the sequences

{gF, m(Z ) and {g (E.) } . We note that thc power spectral densities, fz(,,)

I i . . . .• . . . .- . .. . . .*. * * .- . .. . % '

d;,.;L...-.. A.-. ;.,, . P-P,.. .; .:, : .i . :. - -::: . .7d ,* -:; :;i -h -. , ; "i " , ; "- '
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and fE(w), of respectively the Gaussian sequences {Zi = PT Y } and

(E. = P Y+n). , when (Y } is generated by the Gaussian stationary nominal

density f , are easily found to be given by expressions (49) and (50) below, where0

H F,m() and H S,n(w) are respectively as in (43) and (44).

fz (w) =IIHFm(W)H12[fs(W) + fN(W);WE[- ,n] (49)

fE(W) = IHHsn(W)II 2ffs( W) + fN (W)];we[ -T,] (50)

Let us now define the following quantities.

r pF E{ If 0 E{E iEi+pf 0'S

2 A A rpK 2 A 2 2pF
F rOF ' YpF 2 pS [1 (51)

2 A rps 2 A 2 2
cis ros ' YpS 2 ' pS = oS [1-Y P]

bpA(n) rpA [2 ( 1] 2 /2(c)-1]

pA

n-1 r2 ck-)
+2U (n:2 )rA E [pA [l-y 2 A,/2

*I2 4D(c)- k U- c~ k-1+1 k! - 2 2(k-1+1) (t-1k c - + c 2 2" •
S2 k k! I= (2k+l)'.(Z-I)! k!(2t-l)'.!

;A = F or S (52)

U ()-1 ; x > 0
U(x) =/ ( x

0 0

"'.'.".... ""--',z,"',¢'':'."'"'."'g .''.', '.'.. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..". . . . . . . . .."n | ...
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(w) A [2P(c)-11 f s(W) + e °bpA(n ) [24(c)-1] rpAB N, {n } ,A = 1 pp

P j<Ipl<N-1

+ Oa2 {20(c)[3-c2-20()]-20() + 2c2-2) ; A=F or S (53)
A

e n (fo,)  ( f (w)dw - 2[2 (c)-11 Re(D(w)HF(w))f (w)dw

N ,{In },F 0' o 20 1  s JF,m s
-TI -IT

I

+ T I1) 1 N,{n p , Wdw '54

ii

e (fPR (0 Tr If w~d - 2f2cD(c)-l] T Re(A(w)H (w))f (W)dw
N,{n p},S 0 fO) J s TJfT S,n s

+ f I!A(w)H 2'B N~fnp}S(W)dJ} (55)

where D(w) and A(w) are respectively as in (45) and (46), where HF (w) and

* Hsn(w) are respectively as in (43) and (44), and where c is as in (26). Then,

for e(f,,OF) and e(fo, 0S) respectively as in (45) and (46), we can express the

following theorem, whose proof is in appendix B.

*Theorem 4

Let rpF and rps in (51) be such that, rjpjF > rJpI+l,F 0 and

rip[, S > rjp[+l S " .0. Let ypF and ypS in(59) be such that, YpF < e(l+e)-  and

YpS < e(l+e)- , V J.p > i. Then, given 6 > 0, there exist positive finite integers,

N F and NS) and sets of positive integers, inpF ; < P < NF-I} and

n ; 1 < IPI < Ns-1), such that, nipjF > nj~l+lF and ntpl, S >npl+l,S '

* and,

e(foO - e F(fox0) 1< 6

O N {n pF} 0

Se(fOS) - eNsnp (fo , 0 ) 1<6

where e (f and eN ,{p}(f°') are given respectively by (54) and
N F1: .n . . . ... Jj o, ,. .. .. S. {.n ..S. 1., .', 0
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(55). The latter errors are then used as close approximations of respectively the

mean squared errors e(fowOF) and e(f x ), in (45) and (46).
0' OS

Let us now turn to the estimate induced by the operation in (30).

For stationary information and noise processes, and for the datum x0 being estimated

from infinite past and future observation data, the asymptotic form of this

estimate is as follows.

xOF = dZmF + b ( icy - dj m ) (56)I=--0 i=-m+l =-C

where {d'p} are the prediction coefficients corresponding to the Gaussian

nominal information process, for predicting x0 from {x, ;-o<<-p} ,and where {bi } are

the filtering coefficients at the nominal Gaussian model, for estimating x0 from

{yf ;--wo<<0}. The function gF,m(.) is given by (24), with k-m.

We will study the asymptotic performance of the prediction estimate in

(56), for autoregressive Gaussian nominal information processes, and additive white

Gaussian nominal noise processes. Let the nominal model be described as follows.

u --Au + Bv
n-I n-I 

(57)

Yn = BTu + w
n n

where the sequences {V..} and {w.} are mutually independent, i.i.d. and zero mean

2 2Gaussian, with respective variances 2 and r , and where,

T [x n9, Xn _1  ..... Xo k+l]

al. a2, ..., ak

1 0, ..., 0
A = (58)

0 1, 0, .... 0

0 ......... 0, 1

= 11, 0 ... ' 1

Then, the tstimate in ( )6) t.kes the fol lowit, f()rlml.

-.-. . ...-- 5-... " -". .'. "" -"-°-
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0
, m + B T Am+ i

-!!OF A U + F~m i 1 Ym,F] (59)

; where {b.} are the vector coefficients of the optimal at the nominal model-1

linear mean squared estimate of ,O' given {y, ; i < 01, and where for c as in (17),

and for r-jm being the variance gain induced by the optimal at the nominal model

linear mean squared estimate of x_*, given {y. ; -m+l < i < 01, we have,

T
Tz =m.) [,. (60

* -~msgn (x) ; lxi > Aj,

"~ 1F0-j,m cF rilJ

Let us now define,

TT m+i

i=-m+l

:" Sg = E {.&F,m(Z) Fm()

b'.M

* E{[ U 0 ~A -m] [U -A UjmlT(1

zx E z [ u o m -in] -- T1,i~-1,.Sz - _

P=S -P.S -ST  F+.S , .':{ f .: f =2 ( s ,1)-I * f =0 • iju uz z g i ii ii -i4-lm

0

Sb. I
l 

A

i=-~

S EJ *j*,. -Z '& F '. *.- **-*-*..-Ti (61)+
. .. . ... . . . U ... : U. 0 Am -. -.. -U. -. -. . ..-.- -A.'.. U-.-'. _m '.:..... .- "-'-...,.v - ., .. , - -.- : -_' :-
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(Zg )(Zr (z Z ZT _

i FJl-i,miFl-i,m 
~S - _

A T ST 1 Z (Z [Z zT-s5
Cij = _i  z z , .j 4

N. 2 TJ+S- T T
N.. -1] - uz z33

+ (A-+l) [eT DT S-I C -1]
+ [2i- uz z
11

2 -1[C T S- 1 (G + C .- . - C-
Sij z N, -N iC1

i
where i,j = 1,..., k, where e - 13 .,0,,, .T, and where the exoect-ations

are taken at the nominal model. We then express the following theorem, whose proof

is in arpendix B.

Theorem 5

Let the process {U} be asymptotically stationary, and let Su  and be the
-nOF OF

solutions of the following matrix equations.

S u  A m Su (AT m +oF oF
S = Am S - (AT)m +P Q ((2)

OF oF

where, Q ={ tr(A m SF [AT QTI ) , i,j = 1,...k}

Then,

(i) The solutions S and Su  exist.
OF oF

,ii) The residual process U0 - U is asymptotically stationary.

If M1 < M2 means that each diagonal element of the matrix M is bounded

from above by the corresponding diagonal element of the matrix M2, then,

S < < SU ()oF oF oF

(iii) If tr denotes trace, annd if 1! (A) is the lort't m.i, itudt ei, nvi'ill
max

ot the, mattrix A, then,

7'' J"" "/"" ,; . . ' ,.' ,,- ,v . .. , .. v "" "" "" .' " "" ' .""" ""' " " "" "
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S (A) I 1
maxm

t (S S <-(trP) (64)OF OF I - 1W max ( A ) l 2 m

If the nominal model in (57) is first order autoregressive, with

autoregressive parameter a < 1, then the matrices in (61) and (62) reduce to

scalars, and the bound in (63) are easily found to be as follows,where c is as in (17).

- 2m ]-iSoF = p [1 - I

(65)
SF= p [1 - a I]-

2 A 2 2 A 2where, for a 2 = E{V 0 and r = E{W 0 in (57),

A= A =c = r 0
m O,m 0,M

2 A E X0 - am X ]- (1-am)

2 AM+i X 2 22 a 0 0--0 o0

Sl E b ib Y - a _] =r b + - 2 E bibali-ji
i=-m+l X-m) i=-m+l 1-a =- J=-m+l

A m am+i 0 -i 2m d 2m d2}
s = E X- X ] b (Y - b m = -a duzX i=-m+l 1 1 =-l

AM= 2 -I (66)

0
Aid E b aC

i=-m+i

A2 2 2 2 mP + s + - 2s) f -2X s (-)m u Sl-m uz m I] Sl

q = 1 - d(2-d)f - 2d2 Sl Xl

11 m uz -' .
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The inequality in (64) takes then the following form:

SSoF - SeF < 1 2m p (67)
O-F

The scalars p and tr P, respectively in (67) and (64), are both bounded for

every value of the truncation parameters {X. 1. The bounds in (64) and (67) are
j ,m

thus exponentially decreasing to zero, with increasing m. The lower and upper

bounds in (63) and (65) are therefore approaching each other with exponential

rate, as the design parameter m increases.

7. Performance Measures for Outlier Resistance

Let us consider the frequently observed in practice case of indeoendent and

* additive outliers. In particular, let the noise sequence { WI W0  W1 9 }

be such that each of its elements is generated by the nominal Gaussian noise process,

with probability 1-6, and it is instead equal to some deterministic value, v, with

probability 6, 0 < 6 < 1. Let the value v occur with probability 6, independently

per noise datum. Given the above outlier model, given some asymptotic filtering or

smoothing operation, Roo let e(fo, 6 ,v, 0 ) denote the induced mean squared error.

That is, if f represents the overall nominal Gaussian model, then, e(f ,6,v,i0 ) =

- E{[X 0 -RO]1 fo,6,v}. Let us denote, e(fo,6,xO) 0 lim e(f ,6,v,X0 ), and let there

exist some value 6*, 0 < 6* < 1, such that,

e(fo,6,Xo)> EIX 2Ifo} ; V8> i*
o 0 0o0

e(f ,6, o) <E{X 2 If ; V6 < 6
0 0- 00

- hen, the value 6 is called the breakdown point of the asymptotic operation x0

The breakdown point clearly represents the maximum frequency of independent,

asymptotically large in ampI i tude out Iiers that the operation X0 can tolerate,

before it becom.s worthless; thit is,, bet ore it stArts induit', mean sqiiared

er ror, that i; s I r ger t han t lii t (11'(1111C td Wh('n , 1 b1 T v.I t i 1 I,1;I .a re i ai i b .

S * ... . . . . . . . . . . 0 . . , . . - .- - . . - .% . . . . . , .. -

. ... .... ...-. *4* .**4 ,
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We note that the breakdown points of the optimal at the Gaussian models linear

filtering and smoothing operations, are easily found to equal zero.

Let us now consider a generalization of the outlier model presented

above. In particular, let us consider the case where independent, size m

blocks of outliers may occur. Then, each block occurs with probability 6, and it

consists of a value v per datum in the block. Given some filtering or smoothing

operation x0, we then denote the induced mean squared error, em(fo6v 'x0 )
" Denoting

by e(fo, 0) the mean squared error in the absence of the above outlier model, we

derinte, J =(V) e (f '6 'v2x0) - e(foO 0 ). We call Jm, 6 (v) the variation

function at 6. Given 6, the variation function exhibits the difference between

the mean squared error, when the outlier value is v and the frequency of the

outlier blocks is 6, and the mean squared error in the absence of outliers.

We callm6 (v)m,(v), the normalized variation function at 6, and we call
A

I (v) = lim I 6(v) the influence function. The influence function is the slop

* of the variation function at 6 = 0, and it exhibits the effect of the outlier value

v, at asymptotically small outlier frequencies 6. It is easily found that the optimal

at the Gaussian model linear filtering and smoothing operations induce, for m=l,

influence function, II(v), that is given by the following expression, where C(W) is the

Fourier transform of the linear filter or smoother, and where fN (w) denotes the power

spectral density of the Gaussian noise.

TT

A 2
17(v) (2r) . lv + (2f) fN(w)dw ] C,)

TIT

f 2 C(w) 2 fN ()d.} (68)

As i funct ion of tht ,jtji j, va lli, v, the intluelice flinct' ion I'I(v) in quidratic,

d111d it in( r,;insts I in! in itv ,I v + ,

"- - - -- . . . ."..'..-' - ' - -, . "," .'.- "',- -..... " -- " " .'" " . . -.- "- -' -. *.-%,
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In this section, we study the breakdown points and the influence functions

of the operations in (32) and (38), and the operation in (30). We adopt respectively

the same nominal Gaussian models as in section 6, and we start with the operations

in (32) and (38). Let us then define the spectral densities f (W), f (w), and
s gs,n

f (w), and the Fourier transforms A(w) and D(w) as in section 6. Let H (M)
gF,m Fm

and H S,n(w) be as in (43) and (44), and let us define,

(k) = (21T)-f fg (w) e-Jwkd&;gF,m- gF,m

CT

r (k) =(2)-] f () e wkdw (69)
gs,n -7T fgS,n

1 ;X > 0
U(x) =

x ; < 0

Then, after some straightforward transformations, we find the following

mean squared expressions, for c as in (17).

e(f X0F) = (f f(w)dw + X2D 2 (0) -0 Fs m

- (1-6 )ml 2[21D(c)-i] (2 _) R(D(W)HFm(w)) f(w)dw

[" 220 22)I/
9 f

2X D (0) - [A + r (0)] 27) D(w)[2d(A
m m gD9d

mm-I - f 2-w w

+ U(m-2)Z (1-6) m+k[r (k) + k2 ](2T)-1 JID(w)l!2(e -jw k +e- jk1dw
k=1 gF,m m-

+-(1-, I (2T) ) ( 0) f2 1(m) ,,m2 IXI w ik +

Smni-Im m " k -m + I.. 4 1 ( . ))l .Jd i' I' r ( k i k d. I ( (0)

..................................................................



-25-

if 1 1

e(f o6, 0 ) = ( -  s(w)dw + 02A2(0) -

-Tr

- (1-6 )2n+ I 2[2cP(c)-1](2Tr)- I f R (A(w)Hs

e nH(W))fs(w)dw

-T11

+ 2112A2(0) _ [2 + r (0)1(27)-If IIA(w)11 2d-n 
n gs ,n

n2n 21
+ U(n-1) E (1-6) 2n+l+k[r (k) + ij2(2Tr) ]IIA(w) 112 [e-Jw0k+ eJwk]dw=l gS,nnI

-Tr

' + (1-6)2(2n+I) (2T)i W2A2(0) _ P2 I IA()12[2 eJk dw +

r- k=-2n
11fg (Wd f 12 2n

+ IIA(w)II 2 fg(o)o - J 1A(w)l 2  r (k) e3k]dw (71)S ,n _T _2nS,n
-iT k'=-2n

where A and li are respectively as in (47) and (48). Let us now consider" m n•

the quantities {bPA(n)}, in (52), and BN{n },A()), in (53), and let us denote,

P

H F,m(W) ; for A=F
H AM =IH s,n( ) ; for A=S

CA(W) A( ) •:, () ;for A=S

10,2) ; for A=F

uA  2
; for A=S

2

m " for A=F

n 2 n+1 ; for AS

i.S
|i: :::., ... .. . .. . _. ; :-*.: :::: : : : :- -:- :: -: ; i, - : : : <, "< < ":,< :' :;: ">$
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Let us then define,

F A(6) A 2 (1-8)" ~ c-1(1T fT Re(C A(w)H A(w))f s(w)dw +

IT

2 - 2 (wJ1
+ 2v CA(0) - IVA + b0A(n0)I(27) f e1CA( 1d2 dw

nA-i nA+k2

+ U(nA-2) E (1_6) A [V + bkA(nk)](27T) -  I CA(W)II 2[e j k+ k+e-jk d
k=l _7T

+ + f2nHA2)- 2 2 2 (W)12[ AA-+ 16) (1- A CA (0 ) -V A  11CA()[ E e" kIdw +

J Nkk=-n=An+1
TT 12 r 2 n A- j w

+ lT1CA( O)' 2B N1p,A(w)d - 1CA (w)J[2 IkF_ b kA (nk)eJ kdw

A = F or S (735

dI

We now express the following theorem, whose proof is in appendix C.

Theorem 6

Let the conditions in Theorem 4 be satisfied. Let 6 and 6 denote
F ,m S,n

then the breakdown points of respectively the filtering and smoothing operations

in (32) and (38). Then, given > 0, there exist positive finite integers

N and NS, and sets of positive integers, (n < jpj < N -I} and
*F SpF' - F

{n 1<' jpj < N -11, such that, nipj> ni,adnp,>njj+,; P
PS' S ' jF p+4-,Fan ~r> 1 1

and such that when substituted in respectively FF( 6) and FS(6), they give,

F S'-(i) Unique roots of the functions F F(6) and F S(6), respectively denoted

60 and 60
F,m S,n"

*6 - 60(i) 6 m F,m

* so
-7.

S#r' Sn
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The breakdown points 6 and 6 are unique, and they are both strictly
F.m S,n

larger than zero.

We point out that the filtering and smoothing operations in (32) and (38)

induce bounded, for every value v, variation and influence functions. We do not

include the computation of bounds on the latter functions, due to the tediousness

in their derivation. Wo now proceed with the study of the breakdown point and the

influence function of the filtering operation in (30), for the nominal model in (57).

For the latter model, we first compute the influence function, 1 (v), induced by the
m

optimal at the nominal model filtering operation. Then, we study the breakdown point

and the influence function, I m(v), induced by the outlier resistant filtering opera-

tion in (30). Let C be the kxk matrix defined in (61), and let us define,

0
E= b.={ i

- i= -m+l - i

(74)

A 0  TN= E b.
i=-m+l

Then, we can express the following lemma, where for the nominal model in (57),

2A 2
r = E{W }. The proof of the lemma is in appendix C.

Lemma 2

Let the nominal model in (57) be asymptotically stationary. Then, the influence

function 10 (v) is given asymptotically by the following expression, where I denotes
m

the kxk identity matrix.
.1O

0 (I-C) Am i [v2  T r 2 N] T(AiTm (I-c)T i  (75)
m i=O

We note that for the scalar form of the model in (57), with autoregressive

* parameter ot < 1, the influence function in (75) reduces to the following expression.

2 2 2. Ov A v j -rV
1 0 V) =(76)m 2m 2

44)

, , --, .( ---.
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where,

V2

i=-m+ 1.

E b (77)

Fb.

Let us consider the quantities defined in (61) and the vector W' defined in (74),

and let us in addition define,

A0  Tmi T

i=-m4l 1 
Zl., k

S z E{Z =(T 2 2~~,.k

gS {&m~ + vV) ZT v~
g ,v E.&Fm(Z1'F M( I+ _V)

r.i A~~ iX-l _________

1,v P.iPi

F v f. .jv f. =i f. ,' f. . = 0 ;i4~j1 (78)

P =S -F S -ST F +S
V U V uZ UZ V g9v

SEig~l (Z1.+VPi) gp1  j(Z 1 .~ )1 -1T

A. T ST S-1 T_
ij'v Ee uz -1 I FIjm( lj vj )[ IzI

N. T T T '-1
N.. = ff e~ e +f.~ e.i eA [S Sz0 C-li

Q. = 2-lC T - (H +H. -G. S -1C-C TN -N T C)
*ij ,v z ij,v +jLv 1j,v I ij,v- ij,v

A T
AM (A O .. A- A+~

We a then express the following theorem, whose proof is in appendix C.
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Theorem 7.

Let the nominal model in (57) be asymptotically stationary, and such that the

elements of the matrix A are all nonnegative. Then,

(i) Let I (v) and IU(v) be the respective solutions of the following matrix
m m

equations.

m

I t(v) = P + Am It(v) (AT) - Q + Am StF(A T)M-s
u

m v m v OFoF
(79)

u mu TT m

IU(v) = P + Am IU(v) (A) m -SZ  + Am S (A )

m v m oF OF

where, Qv 0 {tr(Am I t(v) [AT  Q ) + tr(Am SuoF (AT QI ;ij=l,. k}

and where S and Su  are as in theorem 5.
oF oF

Then, the influence matrix function, Im(v), induced by the filtering operation

in (30) and the nominal model in (57), is bounded from above and below as follows.

tr 1f(v) < tr I (v) < tr lU(v) (80)
m - m - m

(ii) Let su( 6) and S (6) be the respective solutions of the following matrix
m m

equations, given 6: 0 < 6 < 1.

m

sU (6) = A' Su(6)(A T ) + (1 -6 )
m p + [1-(1 -6)m[Su + X XT

m m U -M -- m
(81)

Tm

Sf(6) = Am S (6) (AT) _ (1-6) m [R-P] + [i-(i-6)m]IS + X X T

m u -M -M

f. S AT m A T

Awhere R 0 tr(Am T m Qij i,j=l, .,k}. Define, S = E{ If}weeR= {t( ( •~.

Then, the functions f1(6) - tr(sm(6) _o) and f2(6) 6 tr(S t(
6) -S ) have unique roots,

respectively denoted 6" and 6 . Those roots are both strictly positive and less than
m m

one. Furthermore, the breakdown point, 6 of the operation in (30) is unique, and
mo

such that,

6  < 6 (82)
m- m - m

zr e o%
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In the scalar case, where the nominal model in (57) is first order autoregressive,

with autoregressive parameter a: 0 < x < 1, the results in theorem 7 simplify as follows.

Pv(l-qa 2 m) + pa2 m p(q + a 2m) p ( 1-
2m ) + p 2 m

- < I (v) < 2 - (83)
(l-q 2m)2 (1-aq2m 2m -m ( 2m ) 2l_2m ( mq(83)

2 x2 +(2 6 )mI
2 _ 2A Umum

6u solution of : fu(6) A U m un - 0

6 U < 6* < 6  : m  1 --a 2m 1-a 2  (84)
m- m- m 2A s +X 2 +(l-6)M[P- 2 _x2  r2

6 solution o f (6) ; u m u rn 2 0
l2m + (1_ 6 )ma 2 m(l-q) i-a2

2 A 2
where a = E{V 02 for V0 as in (57), where p,q,Sus UZ, , and c are as in (66),

2 A 2
where p is as in (77), and where, for s1 1 as in (66) and r = E{W } in (57),

0 2 2 0

p =E{[, bi (Xi -a X )] If 2 s ,-r bi
l=-nmml

.V+. vP-X m  (85)
f m m

2 2 22 2 _ 2+v + v-
- su + f [2P + v U - - 2suzI +2ppv[,( ) -( )

+ P(VlP-xrn) *( V11+A) m + x 2Pv Su vJ+; m W
A- ].- v+ vp-

-qv C(2-c) f + c2 { m [ ) u []) +"v p P 2 *  p ) + ( p ]

suz 1+Xm vXmu
)UZ - -( J

02 "V[I(C+-) v-

We conclude this section by presenting the form of the influence functions induced

by the filtering and smoothing operations in (32) and (38), when the latter are modified

to operate on disjoint rather than sliding block data. Let then HFfm(t) and Hs n () be

as in (43) and (44), let c be as in (17), let AM and pn be as in (47) and (48), let A()
"RU

and D(w) be as in section 6, let f (w) be the power spectral density of the stationary

information process, and let us define,
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2A T i 2 2 A T .i+n 2
tF =E [P m Xi -m+l If 0 ts = E {[P i-nJ If 0

PF(V) AE {[g T(P Xi T+ (0) g (PT i 2
Fmm+ VHF ~ - gF( P Yi-m+l) If

AT 14-n T i +n 2
p s,n() E {[g s,n(Pn X ni - n + v H S,n(O)) gs,n-(P yi-n)]2 If }

q A (v) gFfm(P T Ti (o)) T } (86)
Fp Fm m i+m(p-l)+l ) gF,m m Xi-M+l -v HF,m o

qs'p(v) A {gn(PT vi+n( 2 p+l)+P) (PT xi +n + v H (0))If
= E1i+n(2p-l)+p gs,n n i+n S f

; where f represents the nominal model. Let the nominal noise process be
0

stationary, let then h (w,v) and h (w,v) be the Fourier transforms of the
gF,m gs,n

sequences {q F,p(v) and {q sp(v)}, and for Zi and E.i as in (51) let f F'm(w)

and f (w) be respectively the Fourier transforms of the sequences
gs,n

{E{g (Z i) g (Z )If 0i and {E{g S  (E )g (E )}}. Then, the influenceF,m g F,m Zi+mp) o S,nEi ) S,n (i+(2n+) p )

functions of the corresponding filtering and smoothing operations are respectively

given by the following expressions.

I F,m(v) = - I  ID(w)1 1 2[hF (u,v) - f (w) +2- 1 PF,m(V)] dw

fF,m gF,m
-i A-v H (0) Xm+V HF (0)

-Tr- ( HFm ) + + tH )- 2 1 (c)]" (87)
F F

fr _Re(D(w) HF,m(w)) fs(w)dw

v (V) -1 -1 Y IIA(w)11 21h (w,v) -f (w) +2-1 PS,n (v)d

-1 - vHSn(O) (1n+ vHSn (0)

7, _ + - , ) -2 (
tS tS

1

Rt'(A((j) HtS, (U ) f ((o)d ,i (88)

77. . *. -
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In contrast to the influence functions induced by the optimal at the nominal

model linear filtering and smoothing operations (see (68)), the functions in (87)

and (88) remain bounded for every v value. In fact, from the latter expressions we

easily conclude,

lim I (F,rm(v) (2 O(c)-l]f Re(D()HF,m(w)) fs(w)dw +

X 2 [2- + 4C-c) - c-1 V'C) f 11D~w)1H f2dMI

- -f HID(w)H 2 fg m(w)dw (89)
-~ F,m

lim Is,n(v) =T1[(2 D (c)-l]f Re (A(W) HS,n (w))f 5 (wi)dw

2 -0. -+ W 2_

+ 11 2 12- 1 + $ (-c) -c - 1 0 (c)I "rj" 1  HjA(w)[2 dw
It]

-i f fIA(w)11 2 f (cu)dw (90)-. J lla(*ll fS,n

8. Numerical Results

In this section, we present some numerical results, regarding the performance

of the filtering and smoothing operations in section 5. We consider the nominal

model in (57), and we first evaluate the performance of the causal filtering opera-

tion in (59). Defining,

The solution of the matrix equation,
-i

Z A[E-BB T(BTB+r2)  ]A T +02 BBT

T 2l
SEB(B t +r2)

R The solution of the matrix equation,
0

R =AR AT + 02 BBT

o 0

we comptlt( thc asymptotic vector coefficients {1. , -ind th, qpilrl iti.c, it) ( ) ;s

loI j1 ,ws.
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b = [(I- B T)A] B • i=-m+l... 0

rniT i Ti
C 1[(1-6 B )Ali- B A-

i=0

S = R -A7 R (AT)
m

-Ii B  i

SUz = [(I-a B )A].S B [R (AT) -Am R (AT)
i=0 -

s r2 M1 [(I-$ BT)A] _ BT(AT(I- BT)] +
:i=0

m-i m-i BT[AU(i)R (AT)U(i)+ E E [(1-B8 BT)A] _0 B-A

i=0 j=0

SAm - i R (AT)m- j ] B S T [AT(I-B B) I

;where u(i-j) =

(0 ; otherwise.

We studied quantitative performance, for the following two special cases of

the model in (57).

Model 1 First order autoregressive, with autoregressive parameter,

2 2
a = 0.5, and a = r = 1.

Model 2 Third order autoregressive, with a, = 0.6, a2 = 0.07, a3 = -0.06 in

(58), and a2 = r2 = 1.

Tables 1, 2, and 3, and figures I and 2, exhibit the performance of the causal

filtering operation in (59), for various values of the design parameters C and m,

when the nominal model is model 1. When the nominal model is instead model 2, the

corresponding performance is exhibited by tables 4,5, and 6, and figure 3. Tables

2 and 5 correspond to independent per datum outliers, while tables 3 and 6 correspond

to size-m independent batches of outliers. The above tables and figures speak for

themselves. The causal filtering operation in (59) can combine close to optima]

*i at the nominal model performance, together with excellent protection aglinst olitliers.
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In addition, this operation is more appropriate for protection against independent

batches of outliers. Similar results are drawn, when the order of the nominal model

in (57) is some arbitrary number k.

We studied the performance of the nonrecursive causal operation in (41), when

the nominal model is model 1. Our results are exhibited in tables 7, 8, and 9,

and in figure 4, where various values of the design parameters E and m are considered.

Comparing the latter tables and figures, with tables 1, 2, and 3, and figures 1 and 2,

we conclude that the nonrecursive causal operation in (41) induces higher asymptotic

mean squared error at the nominal model, than the recursive operation in (59) does,

while the former induces lower saturation point of the influence function. Considering

this tradeoff, we claim that the recursive operation in (59) is more appropriate,

for the autoregressive nominal model in (57).

We evaluated the performance of the smoothing operation in (42), for various

orders of the autoregressive model in (57). Our results were similar to those

exhibited in tables 1 to 6, and figures I to 4. The smoothing operation in (42)

is thus as powerful as the filtering operation in (59).

9. Conclusions

We proposed and analyzed nonlinear filtering and smoothing operations, for

effective resistance to outliers, and simultaneously good performance at the Gaussian

nominal model. We note that a filtering operation, similar to our recursive such

operation (in (59)), was earlier considered by Masreliez and Martin (1977). The

latter authors assumed, however, that the process formed by the residuals is

Gaussian, and used a covariance recursion to define their recursive filter. The

above assumption effectively reduces the problem to the class of filters, that do not

involve nested nonlinearities.

4I . . . ... S_ -,' .



1 2 3 4 5 6

0.002 0.53167 0.53284 0.53333 0.53346 0.53350 0.53351
0.66941 0.56629 0.54159 0.53552 0.53401 0.53364

0.53488 0.53963 0.54136 0.54183 0.54195 0.54198
0.67108 0.57247 0.54945 0.54385 0.54246 0.54211

0.58157 0.608293 0.61640 0.01851 0.61904 0.61917
0.70620 0.63797 0.62328 0.62032 0.61949 0.61929
0.60983 0.64401 0.65401 0.65659 0.65723 0.65740

0.72961 0.67249 0.66099 0.65832 0.65767 0.65750

0.66941 0.71376 0.72608 0.72921 0.72999 0.730190.25
0.78026 0.73998 0.73249 0.73080 0.73039 0.73028
0.70079 0.74848 0.76146 0.76474 0.76556 0.76576
0.80718 0.77357 0.76758 0.76626 0.76594 0.76586
0.76727 0.81887 0.83243 0.83582 0.83667 0.83688
0.86426 0.84156 0.83795 0.83719 0.83701 0.83697

Tible I

Bounds on the asymptotic mean squared error, at the
nominal model.
Model 1. Causal filtering operation in (59).
Asymptotic mean squared error induced by the optimal at the
nominal model causal filter = 0.53112
Upper lines: lower bounds.

1 2 3 4 5 6

0.002 0.09928 0.06814 0.04932 0.03788 0.03056 0.02556
0.14352 0.07476 0.05048 0.03811 0.03060 0.02557

0.01 0.1469 0.10040 0.07274 0.05597 0.04522 0.03786
0.20676 0.10942 0.07433 0.05628 0.04528 0.03788

0.1 0.32204 0.21602 0.15715 0.12180 0.09898 0.08326
0.40878 0.22978 0.15974 0.12228 0.09908 0.08328

0.15 0.38225 0.25595 0.18674 0.14516 0.11824 0.09962
0.47011 0.27034 0.18937 0.14568 0.11835 0.09964

0.25 0.48129 0.32349 0.23761 0.18576 0.15194 0.12840
0.56488 0.33815 0.24036 0.18631 0.15205 0.12842

0.3 0.52466 0.35423 0.26119 0.20477 0.16783 0.14203
0.60450 0.36875 0.26395 0.20533 0.16795 0.14206
0.60417 0.41329 0.30739 0.24246 0.19955 0.169370.67478 0.42723 0.31012 0.24301 0.19967 0.16940

Table 2

Bounds on the breakdown point.
Model 1. Causal filtering operation in (59). Independent
per datum outliers.
Upper lines: lower bounds.
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1 2 3 4 5 6

0.09928 0.13164 0.14080 0.14315 0.14315 0.14389
0.002 0.14352 0.14394 0.14394 0.14394 0.14394 0.14394

0.01 0.14699 0.19073 0.20274 O.2O580 0.20656 0.206760.20676 0.20686 0.20682 0.20682 0.20682 0.20682

0.32204 0.38537 0.40125 0.40520 0.40618 0.40643.1 0.40878 0.40676 0.40653 0.40651 0.40651 0.40651

0.38225 0.44639 0.46212 0.46601 0.46698 0.46723
0.15 0.47011 0.46759 0.46733 0.46731 0.46731 0.46731

0.48129 0.54234 0.55688 0.56045 0.56134 0.561560.25 0.56488 0.56195 0.56166 0.56164 0.56164 0.56164

0.52466 0.58298 0.56672 0.60010 0.60093 0.601140.3 0.60450 0.60152 0.60124 0.60121 0.60121 0.60121

0.4 0.60417 0.65577 0.66775 0.67067 0.67140 0.67158
0.67478 0.67193 0.67166 0.67164 0.67164 0.67164

Table 3

Bounds on the breakdown point.
Model 1. Causal filtering operation in (59). Independent
size-m batches of outliers.
Upper lines: lower bounds.

1 2 3 4 5 6

0.55402 0.57594 0.59937 0.61040 0.61445 0.61566- 0.83214 0.68407 0.63361 0.62154 0.61764 0.61658

0.57548 0.62504 0.66518 0.68180 0.68763 0.68936. 0.01, 0.86214 0.73994 0.70200 0.69383 0.69109 0.69035

0. 0.62110 0.69155 0.72865 0.74097 0.74499 0.746150.89436 0.79589 0.76040 0.75110 0.74788 0.74698

0,65204 0.72942 0.74120 0.77011 0.77401 0.77432
0.94013 0.83110 0.79568 0.78320 0.77516 0.77501

0.69875 0.73479 0.76678 0.78133 0.79002 0.790120.25 0.95182 0.86264 0.80203 0.79312 0.79202 0.79136

0.73478 0.73930 0.78033 0.79300 0.80400 0.805110.96067 0.91011 0.86481 0.82414 0.80923 0.80547

0.73510 0.74902 0.79087 0.81142 0.82267 0.823200.4 0.97033 0.91437 0.86690 0.83571 0.82610 0.82359

Table 4

Bounds on the asymptotic mean squared error at the nominal
model.
Model 2. Causal filtering operation in (59). Asymptotic mean
squared error induced by the optimal at the nominal model
causal filter = 0.54731.
Upper lines: lower bounds.
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0.07594 0.05802 0.04513 0.035395 0.028765 0.02411

0.13890 0.07501 0.04960 0.035980 0.029010 0.02486

0.11029 0.08225 0.06334 0.04958 0.04030 0.03380
0.01 0.02 0111 80 0.450.30

0.20020 0.11510 0.08010 0.05156 0.0450 0.03388
0.1 0.25689 0.18640 0.14353 0.11313 0.09248 0.07790

0.39537 0.22540 0.15003 0.11804 0.09424 0.07823
0.32899 0.23552 0.18083 0.14286 0.11705 0.098780.47563 0.27100 0.20242 0.14811 0.11829 0.09890

0.47094 0.33123 0.25350 0.20121 0.16563 0.127470.60225 0.39693 0.26089 0.20541 0.16735 0.12784

0.3 0.53838 0.37811 0.28952 0.23047 0.19020 0.16150
0.65802 0.42004 0.29457 0.23215 0.19082 0.16195

0.4 0.66166 0.47002 0.36191 0.29019 0.24090 0.205480.75106 0.52401 0.39102 0.30016 0.24210 0.20602

Table 5

Bounds on the breakdown point.
Model 2. Causal filtering operation in (59). Independent
per datum outliers.
Upper lines: lower bounds.

1 2 3 4 5 6

0.002 0.07594 0.11269 0.12939 0.13424 0.13578 0.13622
0.13890 0.13995 0.14500 0.13952 0.13595 0.13682

0.01 0.11029 0.15774 0.17826 0.18406 0.18592 0.18643
0.20020 0.19500 0.19851 0.18820 0.18683 0.18682

0.1 0.25689 0.33813 0.37173 0.38136 0.38444 0.38530
0.39537 0.39220 0.39104 0.38804 0.38740 0.38607

0.15 0.32899 0.41556 0.45031 0.46022 0.46336 0.46424
_. 0.47563 0.47215 0.46903 0.46630 0.46502 0.46482
0.25 0.47094 0.55275 0.58401 0.59287 0.59561 0.59820

0.60225 0.60112 0.60039 0.60004 0.59970 0.59918

0.3 0.53838 0.61325 0.64137 0.64932 0.65175 0.65244
0.65802 0.65720 0.65695 0.65530 0.65398 0.65307
0.66166 0.71912 0.74020 0.74616 0.74795 0.748450.4 0.75106 0.75083 0.75010 0.74970 0.74912 0.74887

Table 6

Bounds on the breakdown point.
Model 2. Causal filtering operation in (59). Independent
size-m batches of outliers.

* Upper lines: lower bounds.
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m i 2 3 4 5 6

0.002 1.1434 1.1339 1.1334 1.1334 1.1334 1.134

0.01 1.1454 1.1360 1.1355 1.1355 1.1355 1.1355

0.1 1.1638 1.1553 1.1548 1.1548 1.1548 1.1548

0.15 1.1729 1.1648 1.1644 1.1644 1.1644 1.1644

0.25 1.1901 1.1830 1.1826 1.1826 1.1826 1.1826

0.3 1.1986 1.1918 1.1915 1.1915 1.1915 1.1915

0.4 1.2155 1.2096 1.2093 1.2092 1.2092 1.2092

Table 7

Asymptotoc mean squared error at the nominal model
Model 1. Causal filtering operation in (41).

1 2 3 4 5 6

0.002 0.14395 0.07477 0.05048 0.03811 0.03060 0.02557

0.01 0.20683 0.10940 0.07433 0.05698 0.04528 0.03788

0.1 0.40652 0.22962 0.15963 0.12229 0.09909 0.08328

0.15 0.46731 0.27014 0.18937 0.14568 0.11835 0.09964

0.25 0.56164 0.33791 0.24036 0.18631 0.15206 0.12842

0.3 0.60122 0.36851 0.26394 0.20534 0.16795 0.14206

0.4 0.67165 0.42698 0.31011 0.24302 0.19967 0.16940

Table 8

Breakdown point.
Model 1. Causal filtering operation in (41). Independent per
datum outliers.
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1 2 3 4 5 6

0.002 0.14395 0.14395 0.14395 0.14395 0.14395 0.14395

0. 01 0.20683 0.20683 0.20683 0.20683 0.20683 0.20683

0. 1 0.40652 0.40652 0.40652 0.40652 0.40652 0.40652

0. 15 0.46731 0.46731 0.46731 0.46731 0.46731 0.46731

0. 25 0.56164 0.56164 0.56164 0.56164 0.56164 0.56164

0. 3 0.60122 0.60122 0.60122 0.60122 0.60122 0.60122

0. 4 0.67165 0.67165 0.67165 0.67165 0.67165 0.67165

Table 9

Breakdown point.
Model 1. Causal filtering operation in (41).
Independent size-m batches of outliers.
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Appendix A

Proof of Theorem 1

The class Fm and the functional I(f ) are both convex. Thus, for

every 6 : 0<6<1, we have,

k k (- 
+ 6 F k

(-6)f I  + 6 f2 )

l1-O)fk + 6 f2 ) < (1-6) I kf) + 6 i(f) inf I (f k constant w.r.t.6
fmEFm

Thus,

O 2 dyk-6) k" Vf y yk2[ yk) yk)
S k k k kk k 20=36 2 f_ d [ k (yk) fk (ykJ (y )f2(y )3

R k 121 2

from which we conclude the statement in the theorem, due to the continuity

of the integrand.

Proof of Lemma 1
k Fm

We wish to find some density function f k in F that attains the infimum

of the information measure I(f k) in (11), where the nominal density fm in class
0

F is the convolution of the Gaussian densities fos and fON . Applying standard

variational techniques, we conclude that if f* satisfies the above infimum, then
k k

there exists some supset A of R , such that,

f k k, (1-C) fk (yk) ; for y c A (A.1)

k k kk

For y k [Rk _ Ak], the density f, (y ) satisfies the following

differential equation,

IVfk Yk Afk (k);A>0(A. 2)Tile genera lVo(y t __ f f (k) e > 0 il.t0

The general solutinn 4, th¢ di ffr'nt il t.qu.,t ion iI (A.?) hIns th,. for,,,
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k ) = exp - T T - C (yk) ;ykc [Rk-A k (A.3)

B V

k T
where B is any column vector in R that is not orthogonal to the vector V ,

and where the scalar function C(y ) is such that, V C(y 
k) = 0. Imposing nowI~ k

continuity of the density function f,(y ) and of its directional derivative

V fk(y ), everywhere in R , we conclude,

Ak: IV , fkO(yk)I T

A f k____ A: 0 - Ti~k I <A(A.4)

For convenience, we now select B = Pik(M, in (A.3), where since M. is

(A.3) ik i

positive definite, P (k) is not orthogonal to VT. From (A.3), (A.4), and (A.1),

and requiring that f,(y ) is continuous on the boundary IP Tk()yk, = X, we fin-

ally obrain the density in (14). The expressions (16) and (17) evolve from the

requirement that dykf = 1. The estimate in (15) is easily found to be
fR k

the optimal at f k mean squared estimate of the information datum x .

S

-Sl

.5a
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Appendix B

Proof of Theorem 2

The operation in (30) has the general form,

a Em x ;IxlA
a x +g(ym, ai xi,{xj}), where for some bounded X, g(x) J_

n i 1 i i '-sgnx; Ixi>x

and where iZa. <c. Therefore, I I < X[l+ I a-jI < X(c+l); Vn. (B.1)

2Let E {[X -Rn
]2 } denote the mean squared error induced by the estimate

x, when the Gaussian nominal observation process is acting. Let E {[X --i 2
n 11 nn

be the same error, when some process in class Fm in (3) is acting instead. Let
n zn

y and z denote sequences that are respectively generated by the processes Vo

and P. Given some set An in R n , and in conjuction with (B.1) and the Schwartz

inequality, we have,

E {[Xn -  n]2 znCAn} = E o {X2 I zn An}.-2E({XnR I znCAn} +

+ E [ 1n2 IznCAn} <
11 n

< c + 2El/2 {X2IznCAn}El/2Xn]2IZ nEA n}+E [ n]2 1znCAAn }

< A1/2 2 2 1/2 2A
< c + 2Xcl(c+l)+X (c+l) =lc +X(c+l)2 =C (B.2)

Due to (B.2), and considering ergodic and stationary observation processes in

conjuction with Fm, we obtain: Given r>O, there exists n , such that,
0

22 i+m i-4mn
Vn>n ;E {fx 1 2 [< (l-c+-n)E{[X - 2 I l#i:Y (z i+ l y i+I)>c]<nC'yn CR n + £C

(B.3)

where, for independent m-size outliers, there exists some f, >0, such that,0

E[X 1 2 i i4n +m ]<n nE:Rn
-[n n [:Ym(Zi+lYi+1
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<E [X n- R 12  +CC;VC<C ,Vn>n (B.4)

From (B.3) and (B.4), we conclude: Given q= , there exist n and
0

6>0, such that,

JE {[X nn 2 }-E I < C (2- )C+ {[X - }<
i n n Po{n-n22 2 Epo n n -

5 A< C= 6; V n>n , V <E

•2 6
Thus, given 6>0, there exist, n and C:0 <E<min(Eo, 2 ), such that,

0 o'5 C

2}_ 2}

1n (jO,.) <C implies jE {[X -Rn I-E [Xn- n 1 11<6 ; Vn>n
n, Pn 0pp 11 n- n POi n- n o

The proof of theorem is now complete.

Proof of Theorem 3

Both the operations in (32) and (39) have the form,

xkA = a. g (y.)
kA 1 i

where Ig(')I<A, and (E a.) < c. Then, subject to any process, h, of mutually
i i -

independent m-size batches of outliers, each occurring with probability E, we have,

E{(2-E 1 2{2 1 ( YiTn- I ))+
'" {X--kA2 11  -2 i a E k

+ EZ a a. E g(Yi ) g (Y1+I

i j J i I j
2 i+m-l1 h{k~ i+m-I )l

E {X 2 -2(1-E) E a. E{X g(Y )}-2c 7 a E{X~g(
00 k i 1 ii hk l

+ . E fg(y i+m-l )(y.+m-l)
i j I .1 no i

" + Z Z a~a :yi4m-l A,( il- ) -1: { ,(yi - )r(Y jI~m - )

Y X (Y i. F y iI (Y + - I'

J.,
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Or,

JE { [Xk-9kA] 
2 }-E o { Xk-xkA] 

2

< 2c E a [E gX jg(Y i+- 1 )1} + E i+m-i M- i o k 1i h kg(Yi

+ 4e E E a. a. E lg(Yi gY -)I (B.5)i j i j

; where,

{Ig( i+- Wy j+- )1} < x 2 < 00 (B.6)

; and where applying the Schwartz inequality we have,

Eo g 4,i  1I 1/2. 2. 1/2 g2 i+m-l1 1-c/2

YV < E~' X10N E I/2{g (Y i l)I < c 1 2  <00

(B.7)

Ei-fin- 1 1/2 2 1/ 2 2  i~n-l 1 1/2
E{ hI'IIg (Yi-) l o {XkE {g (Y ) } < c

Applying inequalities (B.6) and (B.7) to (B.5), we obtain,

iE {[Xk-RkA]2 }-E {[Xk-9kA]} j< 4c (E a.) c11 2X + 4E U a.) 2 2
P o1 i Iii

1/2
= 4E (E a.)X [c + T a, = u-C (B.8)

i 3i 1

where C = 4X(E a.) [c I / 2 + E a.] <oo.
i I i I

Now, given 6>0, we select E =6 C 1, to obtain,

n, (P o 10) <E =6 C -  [ X- ] -E < 6Xk-XkA2 I ; Vk

and the proof of the theorem is complete.

P A-e
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Proof of Theorem 4

We will prove the theorem in steps. Let r denote the pth autocorelation
P

coefficient of either the sequence {Z. = PT Y i or the sequence {E. = PT Y i+n}
i m i-m+l ' I n i-n'

at the nominal Gaussian model. That is, either r = E{Zi Z i+pf } , or r p= EE E i+pif 0

Let then c be the constant in (26), and let us then denote,

r-2 =or y I = 2 = a2 [l-y 2  (B.9)
p o2 p p

Let L denote the pth autocorelation coefficient of either the sequence
p

t (Z.)}, or the sequence {gs,n(Ei)}, for gF,m(.) and gs,n respectivy ds in

(47) and (48), and at the nominal Gaussian model. That is, either

LP E{g F,m(Zi)gF,m (Z i+ p )If }, or Lp = Eg (Ei)gs ((Eip o )f 0.

Let g(.) denote either g(.) or gs(.), and let f(x) denote the zero mean,
Fm Sn

variance a Gaussian density function at the point x. Let X denote the truncation

threshold of the function g(.). Then, for (x) and ?(x) being respectively the density

and the distribution functions at the point x, of the zero mean unit variance Gaussian

random variable, and for c as in (26), we directly obtain,

L a2 {2[1-c 2 1 (c) - 2c4(c)+ 2c2 -1 (B.IO)
0

X=2 x A+y x (X+Yx

-- J a I) f(x)dx
pC Op p o

i'i -r [2 $(c)-I] ; jpj > I .1

p

(k)Denoting now by (x), the kth derivative of (x), at the point x, and

-* applying the Taylor theorem, we have that,

Given n, there exists t 0 t < 1, such that,
n n

.1

, - -................... . .... ..-.. .... .- * - .. . . . ..-.- * * * . --. .. ..-..... .. -.. .- -'- . .. '-- '" .-.. . -..
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CYx -aYx

p p p p p

2(nWi) k+2 k+2 -Y2n+i 2n+l

k= ~() ) 0 k2(+)x++~~ n i (2nnl
pC (k2 p Yp (nl

(B. 12)

Substituting (B.12) in (B.11) , and via some straightforward transformations,

* we obtain,

_fX) yx4 n-i 2k+i 2k+l
IPI >1; L = ~ x 2c _ (2k-1) + p

p~n~ 2np ~ la l2 (2k+l).

+ 2-i +A t --- ~ j P.~-- 1 =--~~ f(x)dx-

4.-r 
[20(c) -1] p Yp 2=)

ypl

=b (n) + 2 - f x2n+li (2n-1) / t dv x
a (2n~ g~x)f(x) d +x-4

;where, for c as in (26),

A / c(n) =r~ (24 - [ i 24(c) -1]

pp

k

e+ 2 L 2k + l) ! ( - n -2k ! (2 e- ) ! )

(~ %
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- dx

2n+l2n-1) -+ t ; x +1)f(x)dx

<_ max -) ( + tO d j

= (2n+1) 2(n+l) (B. 15)

; where,

nCn max q(2n-1) (x) < 2 n. (B.16)

x 121 e 2-

From (B.13), (B.14), (B.15), (B.16), and (B.9), we conclude,

2 n

L - b (n) < r B(n) ; IP > I (B.17)P P P( [e(l-yp) 2--

2 e
; where b (n) is as in (B.14). We note that, if y < f4--, then given p, given

> 0, there exists nop, such that, B (n) < r C; V n > n . Thus, if y2 <e
p -- p op p _ e

V Pl > 1, and if {re} is such that, rjp1  > rll
+ - 0. then given p, given > 0,

there exists n , such that B (n) < C r ; V n > n and {n I is a decreasing
op p - p ~ - op o

sequence with increasing 1PI. We thus conclude that, if r1p, > r lp~i-l'..O and

2
yP < V IpI > 1, then, given C > 0, there exist a decreasing with increasing

ipI sequence {n }, and a positive integer N, such that,

b (n) -Cr < L < b (n) + Cr ; Vn >n op, for given p
S P - p-- p p -> p

2 (B. 18)
b (ni) = b = r I20(c)-1] ;V p > N

•p P P

.........................................
'." '..'.-:,-"-'.";,,..'.'-,'.'.. "--,'-.,.." ." -- .. "" ".""." ...-.-. ,,..".."........-."...-..,.,.,,.,......,...,.....-,.l .
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b. 7

Let us now denote by C(w), either D(L) in (45) or A(W) in (46). Let us

denote by H(w), either H (W) in (45) or H (w) in (46). Let also B(w) be

r F,m S,n

the Fourier transform of the sequence {b (n );IpI < N-l,b ;Ip > N,L 0  in
p OP p 0

(B.18) and (B.10). Let e(fo, 0 ) denote either the error e(fo '0F
) in (45), or the

error e(f ,os ) in (46). Then, due to (B.18) and (B.10), we directly obtain,

T

IIc a f (d) (B.19)
Tr 112 dw _f11

k " ;where,

n 

f

BM a 22[1- I I (c) -12c(c)+2c + R(nC)OP) +

-1pl<N-1

+ B24(-c ] r e

I 
p op

jpI>N

°. A 
*
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21 [2(c) -1lI f (W) + ay 124P(c)[ 3_C2 -24)(c)) -2ccO(c)

*+2c 2 _21 + ejWpjb p(n Op - 0(c)-l 2 rp(B.21)

* l<IpI<N-l

The statement of the theorem follows directly from (B.19), (B.20), and

* (B.21).

Proof of Theorem 5

(1) The eigenvalues of the matrix A in (58) are the roots of the

polynomial equation,

xk -Xk-laxa -- ak=0

* Due to the assumed stationarity, their magnitudes are all less than one. Thus,

*the eigenvalues of the matrix A 2mhave also magnitudes less than one.

Let us now consider the matrix C in (61) as a function of the design

parameter in, and denote it then C m. For mn varying, we easily find that,

Cm+l = C + (I -C ) Am h B T A- (B.22)

where, E B

h =M

(1 -rn) + r

(8.23)

E-in 0 a. (-in) -

E [U El U U -E U yin m-1 T ~

. ..
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and where the expectations in (B.23) are taken at the nominal model. Also,

Z0 B BT

CI 0 2 (B.24)

11 (0) + r

It is easily seen that the matrix C in (B.24) has one eigenvalue between

zero and one, and that the remaining eigenvalues equal zero. Due to (B.22), and by

induction, the same assertion holds for C , m > 1. The magnitudes of the eigenvaluesm

of the matrix Q are then also less than one, and the same assertion holds for the

matrix P. Hence, the equations in (62) have solutions.

(ii) Let us consider the vector Z in (61), and let us define,

X A ^= 0  u 0

2 U - (B.25)
- --- m --- M

Y AU 0 A U.. ..--

From (59) we then easily obtain,

X Y + A M (Z + C Am Q) (B.26)

Under the nominal model, the vectors Y and Z are jointly Gaussian, and

independent of the vector Q2. Let 4 (x) and (w) denote the density functions of

the vectors X and Q2 at the nominal model, and at respectively the vector points x

and w. Considering expectations at the nominal model, let us define,

R i S S
11Z 2

.:--L
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!k 21Tk Iy/ 1 T S-1
dz exp(- .jz S z)-X k i- 1x __ _ T.

(Cx, w) = 1/2 2 exp (- Ix + g (z + CAmw) -Amw -Rzl

% k (27) jSy~z I Z 1x + [ + z

i-1

Sy/z + CAw) -Aw - Rz]) (B.27)

where S and S are given by (61). In the sequel, we will use the

following theorem, where for x = [xl,x 2 ... ,xk T, we define,

I1_ 11 max Jxil (B.28)
i

Theorem B
Rk R Rk

Let f(x,v) : x R 4, R be a measurable function, satisfying the following

condition, for some positive real scalar function h(v).

Ijf(x,v) -f(x',v)ll < ii x-xi h(v) ; V x, x-eR ,VveR f (B.29)

kLet {X , n > 01 be a stochastic process in Rk , defined by the recursive

equation,

X = f(X , Vn ) , n > 0 (B.30)
nl -n -n

where {V , n > 0} is an i.i.d. process in R , and where V is independent-n -- --1

of Xn , for all n > 0. Let nV be absolutely continuous, and let then p(v) be its

density function at v. Let p(v) be such that,

J h(v)p(v)dv < < 1 (B.31)

Then, the process {X , n > 01 is asymptotically stationary. Furthermore,

*. the asymptotic distribution of X , for n is the same for any initial distribu-

tion of X and depends only on the function f(',') and the density p(v).

~ .> 4~ : ~ *~ . . 0. ... . .. . . ...- "- "-" . ': . ', . ." '." -
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Proof

From (B.30) we conclude that {X } is a Markov process. Thus, to prove

asymptotic stationarity, it suffices to show that, given any distribution for

X, the distribution of X converges weakly to a unique distribution in R 
k

--n

asn- .

Let p 0(X) be an arbitrary density function, VxCR . Let then the sequence

{_n(X), n > 0} be defined as follows.

1'n+l (x) A (XW) _ (w) dw (B.32)

where A(x,W) denotes the conditional density function of x, given w,

when x = f(w,v), and where I is independent of V, and p(v) is the density

function of V at vERI. Let us now define the sequence {A(n)(x,w) , n > i},

as follows.

A (xw) =A(xw)
(B .33)

A (n+l) (xW) = f A(n)(x,z) A(1 )(z,w)dz
k

Then, we can write,

=(x) f A (n) (xW) O(w) dw (B.34)

Rk

To show weak convergence of the sequence {o n (x)}, we need to show that

k
there exists a density function w(x) ; xCR k , such that, for any continuous and

bounded function, g(x) in R , we have,

g(x) -- (x)dx 
g(x) (x)dx (B.35)

R -n . ...
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Let us define the sequence {g (x), n > 01, as follows.

g0(X) = g(x)

I- (B.36)
g n(X) = k A(z,x) g n-(Z)dz

Rk

Then,

g(x) Pn(x)dx = J g(x) 11(x)dx (B.37)
k k

fRR

Let us define,

U sup (Z sup Ig(Z) -g_ m ) (B.38)
6 > 0 I 1 -. I I< 6

Without lack in generality, we will assume that the quantities {u }
n

are all finite (this is true if, for example, the functions g(x) satisfy a

Lipshitz condition). From (B.30) and (B.36), we obtain,

gn(X)= gn-l(f(x,v))p(v)dv (B.39)

fRk

From (B.38) and (B.39), we conclude,

U < f {sup (6-  sup gn (f(x,v)) -g n W(f(,v))T) p(v)dv

Sk 6>0 SIx-uJl1<6
R

f h(v)p(v) Isup ([6h(v)] sup gn_](x)-gn-lMt)) dv

Rk 6>0 IjK--jI<6h(v)

u =n ]kf h(v)p(v)dv = Un < Un- 1  (B.40)

R

From (B.40), we conclude that u - 0, as n - 0, and that g (x) - g(x) = constant on Rk ,

n

as n - o'. Thus,

' g(x) 1jn(x)dx gn(X)i0 (x)dx constant (11.41)

Jk Jk

4
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Due to (B.29), the sequence (o (x)} is tight. Thus, there exists a
*0n --

k
subsequence {p n (x)}, and a density function W(x) in R , such that, for every

continuous and bounded function g(x), we have,

I n. (x)g(x)dx 
f (x)g(x)dx 

(B.42)

Rk n f.
i

From (B.41) and (B.42), it immediately follows that,

J g(x)ljn(x)dx - f g(x)V(x)dx

k n-Ka JRk

and the proof of the theorem is now complete.

Let us apply now theorem B, for expression (B.26). In this case,

T
V = [YZJT

, Z = 2k

f(Q,V) = Y + Am 1 - gFm (z + C Am _)

where, for I max(B)I denoting the absolutely largest eigenvalue of B, we have,

f(X,V) -f(Q,V) 1 < fl A m (I-C)(X - _)J <

< a (Axm [I-CI) X - _ II (B.43)

Since max (Am[I-C]DI < 1, the conditions in theorem B are clearly satisfied,

with h(v) = 1 max(Am[I-CI)I. Thus, the densities Ax(x) and (w) are asymptotically

* identical, where due to (B.26) and (B.27), we have,

(x) A(x,w) (~w) dw (B.44)

From (B.44) we then obtain,

* [-
SoF = E{X XT} () 'I. (B.45)

Rk

whcre,

;l(.) A / T' ).

x X (x,.)) i. 40)

k
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The function M(w) in (B.46) is analytic, and possesses Taylor exnantion.

In particular, applying the Taylor theorem we write,

M.. (W) = Mj (0) + [VTMij(w)Iw = 0]w + 2-1 wT [VMij(w)I _u]2 ; for some _p:

0 < P < w (B.47)

where we can easily find that,

M(O) = P
(B.48)

w (AT)mA7 w- W (A)m Qj A W [V2 M.ij(W)j JW W (A) A ; V W

The expressions in (B.48), in conjuction with the equality f!-- (w)dw = 0, and

" expressions (B.45) and (B.47), give the inequality in (63).

(iii) Via substitution, we find,

I~ co -Z~ m T mi
Itr (SuF - S)I < Itr (P + PAm' (A) -P) I

,0 .i=i1

tr (A AT)m (I-[AA Tm)-I P <- lU max (A) 2mP
-- max(A)l2m

where the inequality in (B.49) evolves from the fact that the magnitudes of the

eigenvalues of the matrix P are all less than one.

%e

'°
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Appendix 
C

Proof of Theorem 6

Let eNF,{np (f , 6,'O ) and eNs,{n s} ,S (f 06 ,  ) denote respectively the

mean squared errors e(fo, 6'OF) and e(fo, xOS), when the correlation coefficients

r (k) and r (k) are substituted by the bounds bkF(n) and bks(n), in (52). Then,

we easily find,

Cf , x E{X 2Jf +FF(6)
N, {n p},F F o' 0 o F

(C.1)

Z ^2
eNs,{nps},Sfo'6 o ) = E{X 0f 0 +F (6

e {n p,A(fo,O,x0) + E{X 0 fo} +FA(O) = eN {n },A (foR, A=F,S

A' pA A' pA

where eNA {pA (fo,); A-F,S are the error bounds in theorem 4.

It can be easily seen from (70), (71), and (73), that e(fo,6,x OF),

e(fo6,' OS), F F(6) and F S(6) are all monotonically increasing with increasing 6,

and are all continuous and differentiable as functions of 6. Also,

e(fo'O'R0F) < E{ X2 1fo, e(fo' ) < E{X 21f 1, and,OF0 0 OS O o

e(fo,l, ) = E{X 2f I + X2D2(0)
.OF 0  o m (c.2)

e(fo' ',os) = E{X 21fo } + V2A2 (O)

Thus, the breakdown points 6F,m and 6 exist, are unique, and are strictly

between zero and one. In addition, if can be easily found that the functions

GF(6) = e(fo,6,F -EX If) -F(6), and G ) L= e(fo,,k - E21fo -F0)
FOF 0 01f F() S (,, 0 ) S E~ 0  S

are such that,

A
a ..-
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c.2

G F(1) = G S(1) = 0

IG (6)1 < IGF(0)I = Je(fo,0 - t n (foX) I  (C.3)
F F -''o'OF N F*(n F },F o~0^0

IG (6)1 < 1Gs(O)I = Je(foXos) eN , (fo  
) I

Due to (C.3), and via theorem 4, given CI > 0, we can find integers NF and

NS) and sets {n pFl < IPI < N F-11, {n ps;l < IPj < N S-1}, such that,

IGF( ) < 1 ;V6, (Gs(6)1 < 1 ;V6. Then, for CI small enough, we can

also have, F (0) < 0 and F (0) < 0, while at the same time we have, F (1)=X D 2(0)> 0
2F 2S F m

and F S(1)=.0 A (0) > 0. Thus, the functions F F(6) and F S(6) will then have unique

6 and 6 0. Due to the continuity of all the functions, e(f, 6 ,OF)zeros, F,m S,n

e(fo,6, O ), F F(6)' and F S(6), with respect to 6, given C > 0, we can find

> 0, such that IGF(6) < Ci;V 6 and IGs(6) < CI;V/6, gives:

16 * 6o 0 and 16* -60 1 < C.
F,m -F,m 6S,n S,n

Proof of Lemma 2

Let us define,Y , X, and _2 as in (B.25), and let us also define,

0

Z b. B U -Am + ' U mI
-1 i=-m+ 1

0 (c.4)
b.

i=-m+l

Then, for C as in (61), the optimal at the nominal model filtering operation

can be written as tollows.

. . . .. ..-..... 1,.. . ., .- _-.,: ' .-.-.---- / .', .'...'.,/_,,'_.' X,1 .- '.":"v'. .' : . 5%'.:', .: ,- .", -
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c.3

X =Y + A Q - +z1 +2 + C Am  1 (C.5)

where _Q is independent of Y, Z1 , and Z2, where Y and Z are independent of Z

and where the vectors Y and Z are zero mean and jointly Gaussian. In addition,

denoting by G(ME) the mean M and covariance matrix Z Gaussian distribution, the

vector Z2 has the following distribution, in the persence of the m-size block

outlier model.
(1-6) G (O,r 2N) + 6 G (vp,O) ; 0 < 6 < I (C.6)

Due to (C.6) and the fact that the distributions of X and Q are asymptotically

identical, we easily find from (C.5),

A -i

E{X} = -6v [I - (I - C) Am ] p (C.7)

From (C.5) and (C.7), we also find,

E{X XT (I-C) Am E{X XTI (AT) m (I-C) T +

+ (1-6) (E{(Y-ZI ) (Y-ZI)T} + r2 N)
-- 1z(-)T~ } 2 rT)+

+ 6(E{(Y-ZI) (YZ Ti + v2 T +

+ 62 v Z((I-C) A' fI-(I-C) Am] T T +

+ PT [I- (AT)m (I-C) T ]  (AT)m (I-C) ) (C.8)

.. Solving (C.8), we finally find, for E {X XT } = E{X XT I at 6=0,0-- --

E{X XT} - E {X XT}

I (v) = lim 0
m 6-0 6

=i~dA [ 2  T -i T

[(I-C) i r2 N] [(A T)e(I-C) T i (C.9)
i=O

; where the infinite sum in (C.9) converges, since the eigenvalues of (I-C)Am

have magnitudes that are strictly less thatn one.

9' *.---. * * * -.*-.-*.* ..
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Proof of Theorem 7

6

(i) Let X, Y, and 1 be defined as in (B.25), appendix B, and considering expectations

at the nominal model, let us define,

S E{[Y - E{YIZI} ] [Y - E{YIZ 1 } IT

R A T S - l
uz zI1

A - 1/ 1 T - (C.9)
A (x,w) = (2 )- k Sy/ 1/2 i /2 dzexp(-2 z s- z).

1  Z k - Z
1 R1

.exp(-2 -1 [x + (z-vlj+CAmw)-A z] T - -i [x +gF, (z+V+CAmW)-Amw-RZ])
S1F, m 1= y/z1

Given 6, and the m-size block outlier model at level v, the vectors Y, Z, and

-1 are still independent of the vector Q. Then, for x) and 6,(w) respectively

denoting the density functions of X and Q2, for A(x,w) defined as in (B.27), appendix B,

and for,

A6,v(X,W) _ (l-6)A(x,w) +6Av (x,w) (C.10)

we can write,

6 W f A 6 ,v (x,w) 6 0(w) dw (C.11)

R 
k

It can be easily found that theorem B, in the proof of theorem 5, appendix B,

A1 m 1 I<1 hutednste and
applies on (C.11) with h(v) imax (Am[I-C]) < 1. Thus, the densities

6(W) in (C.11) are asymptotically identical. From (C.11), we then obtain,

E{X XT } =f [(1-6) M(w) + 6MM (w) dw (C.12)

R

where M(M) is as in (B.46), appendix B, and is bounded as in (B.48), and where,

( x A (x,w) dx (C.13)

fR

Applying the Taylor theorem on the analytic matrix function M (w), and similarly

to (B.47), for the matrix M(M), we find the following expression, where A < B means

that each diagonal element of the matrix A is bounded from above bv the corresponding

diagonal element of the matrix B.

% .. . , J .
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c.5

Pv + Am W T (AT)m + [VMv(w) W =0 w >M > P v + A m ww (AT)m +

+ [VMv(u))9 = 0 1w - Rv(M) (C.14)

where Rv(W) = [ T(A T)QI ,Am ; ij = 1,...,k}. Let us now define (x)

and 60(W) as follows.

- k Aw) 6(w) dw (C.15)

where from the proof of theorem 5, we have that aypo(x) and -a

tically identical. Then, considering also the densities in (C.11), we easily find,

Ir(v) = f M(W) [ im 61 (6(w) - 60(w))] dw + [M () - M(w)--](w) dw
M Jk 6-i k- J

(C.16)

where from theorem 5 we have,

1 0 t w0d

f _ 0 ()d OF- < f Mw60) <SOF

and where,

fR _ [im l( 6,(w) -f£(w))] dw = I (v)

k 6-0 
S1

From the above, and using (C.14) on (C.16), we finally find the result in (80).

(ii) The results follow easily from the bounds in (B.47), appendix B, and the bounds

in (C.14), by setting v - -, and by substituting 1-6 by (1-6) m , and 6 by 1- (I-6)

In particular, we then find,

f (6) _ tr(S f(6) - S ) < tr(E{XX T } - E U T) < tr(sU(6) - S fl(6) (C.17)
2 in 0 -o 0-0 M0 1

where the functions f (6) and f (6) are trivially found to have unique, strictly
1 2

u
positive, and strictly less than one roots, 6 and 6 . The inequalities in (82)

* follow then trivially from (C.17).

*
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